123 research outputs found

    Probabilistic earthquake-tsunami multi-hazard analysis:application to the Tohoku region, Japan

    Get PDF
    This study develops a novel simulation-based procedure for the estimation of the likelihood that seismic intensity (in terms of spectral acceleration) and tsunami inundation (in terms of wave height), at a particular location, will exceed given hazard levels. The procedure accounts for a common physical rupture process for shaking and tsunami. Numerous realizations of stochastic slip distributions of earthquakes having different magnitudes are generated using scaling relationships of source parameters for subduction zones and then using a stochastic synthesis method of earthquake slip distribution. Probabilistic characterization of earthquake and tsunami intensity parameters is carried out by evaluating spatially correlated strong motion intensity through the adoption of ground motion prediction equations as a function of magnitude and shortest distance from the rupture plane and by solving nonlinear shallow water equations for tsunami wave propagation and inundation. The minimum number of simulations required to obtain stable estimates of seismic and tsunami intensity measures is investigated through a statistical bootstrap analysis. The main output of the proposed procedure is the earthquake-tsunami hazard curves representing, for each mean annual rate of occurrence, the corresponding seismic and inundation tsunami intensity measures. This simulation-based procedure facilitates the earthquake-tsunami hazard deaggregation with respect to magnitude and distance. Results are particularly useful for multi-hazard mapping purposes and the developed framework can be further extended to probabilistic earthquake-tsunami risk assessment

    Simulation-based Probabilistic Tsunami Hazard Analysis:Empirical and Robust Hazard Predictions

    Get PDF

    Empirical assessment of nonlinear seismic demand of mainshock-aftershock ground motion sequences for Japanese earthquakes

    Get PDF
    This study investigates the effects of earthquake types, magnitudes, and hysteretic behavior on the peak and residual ductility demands of inelastic single-degree-of-freedom systems and evaluates the effects of major aftershocks on the nonlinear structural responses. An extensive dataset of real mainshock-aftershock sequences for Japanese earthquakes is developed. The constructed dataset is large, compared with previous datasets of similar kinds, and includes numerous sequences from the 2011 Tohoku earthquake, facilitating an investigation of spatial aspects of the aftershock effects. The empirical assessment of peak and residual ductility demands of numerous inelastic systems having different vibration periods, yield strengths, and hysteretic characteristics indicates that the increase in seismic demand measures due to aftershocks occurs rarely but can be significant. For a large mega-thrust subduction earthquake, a critical factor for major aftershock damage is the spatial occurrence process of aftershocks

    Defining structural robustness under seismic and simultaneous actions:an application to precast RC buildings

    Get PDF
    The increasing complexity of urban systems is making robustness a crucial requirement for structural design. The paper deals with the concept of robustness of civil structures against extreme events. After a brief literature survey, a novel point of view to robustness assessment is proposed, fitting the most accepted robustness definition. The proposed approach is discussed and compared with other methodologies for quantifying structural robustness. Thus, the methodology is developed and applied to an existing precast industrial building case study, assumed to be prone to seismic and wind hazards. In particular, the case study is assumed to be located in Emilia, Italy, where a significant earthquake occurred in 2012, causing relevant damage to gravity load designed industrial buildings. Three structural options are discussed, namely a simple supported beam–column connection (gravity load designed solution) and two pinned connections (seismic designed solution), where only one of them satisfies the current structural code requirements. The results are discussed in terms of robustness quantification, by means of a robustness matrix. The authors envisage that this approach can be effectively adopted for portfolios of existing structures, to prioritize retrofitting interventions, aimed at maximizing the overall risk mitigation with limited economic resources. © 2015 Springer Science+Business Media Dordrech

    Stochastic coupled simulation of strong motion and tsunami for the 2011 Tohoku, Japan earthquake

    Get PDF
    © 2016 The Author(s)This study conducts coupled simulation of strong motion and tsunami using stochastically generated earthquake source models. It is focused upon the 2011 Tohoku, Japan earthquake. The ground motion time-histories are simulated using the multiple-event stochastic finite-fault method, which takes into account multiple local rupture processes in strong motion generation areas. For tsunami simulation, multiple realizations of wave profiles are generated by evaluating nonlinear shallow water equations with run-up. Key objectives of this research are: (i) to investigate the sensitivity of strong motion and tsunami hazard parameters to asperities and strong motion generation areas, and (ii) to quantify the spatial variability and dependency of strong motion and tsunami predictions due to common earthquake sources. The investigations provide valuable insights in understanding the temporal and spatial impact of cascading earthquake hazards. Importantly, the study also develops an integrated strong motion and tsunami simulator, which is capable of capturing earthquake source uncertainty. Such an advanced numerical tool is necessary for assessing the performance of buildings and infrastructure that are subjected to cascading earthquake–tsunami hazards
    • …
    corecore